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ABSTRACT

The internal heat transfer problem for a typical

power-transistor structure has been solved analyti-

cally. The relations among current distribution,

heat generation, and temperature distribution have

been derived. Usage of the resulting equations is

illustrated by application to the most elementary

S problem, namely, uniform heat generation under

the emitter.

-iW



0

CONTENTS

I. INTRODUCTION ............................ 1

II. THEORETICAL ANALYSIS ..................... 1

A. BASIC SOLUTION ....................... 1

B. RELATION TO EMITTER TEMPERATURE ...... 5

C. RELATION BETWEEN CURRENT DISTRIBUTION
AND HEAT GENERATION .................. 6

nI. EXAMPLES ................................ 7

A. SEMI-INFINITE ONE-DIMENSIONAL TRANSISTOR. 7

B. UNIFORM HEAT GENERATION ...................... 8

C. EMITTER PARTLY EFFECTIVE .................... 15

D. OTHER HEAT DISTRIBUTIONS ...................... 17

0 IV. CONCLUSIONS .............................. 17

NOMENCLATURE ................................ 19

ACKNOWLEDGEMENT ............................. Z3

FIGURES

1 Structure of a Typical Power Transistor ............ 2

2 Geometry and Coordinate System for Analysis of Heat
Transfer in Power Transistor of Fig. 1 ............

3 Maximum Temperature in Power Transistor as a Function
of the Ratio of Device Thickness to Half of Emitter
Spacing . . . . .. . . .. . .. . ... . .. . .. . .. . . .. .. . . 12

4 Maximum Temperature in Power Transistor as a Function
of the Ratio of Emitter Width to Emitter Spacing ....... 14

5 Maximum Temperature in Power Transistor as a Function
of the Ratio of Half of Emitter Spacing to Device
Thickness .. ....... .... ... ...... . .. ........ 16

(V9



0
I. INTRODUCTION

One limiting factor in the operation of a transistor is the internal heating

due to the flow of current. Not only does heating affect the characteristics of

the transistor, but in excessive amounts it may also cause certain junction

areas to become nearly intrinsic. When this happens, the transistor action

ceases altogether. In power transistors, which are intended to carry large

current loads, the internal heating is an important design consideration. In

this paper, the heat transfer characteristics of a typical power transistor are

examined theoretically.

II. THEORETICAL ANALYSIS

A. BASIC SOLUTION

A diagram of one type of power transistor structure is shown in Fig. 1.

On the top of the transistor is a parallel series of long emitters. The emitters

and the base region are actually much thinner than shown in the side section.

The collector is securely attached to a heat sink. Most of the heat generated

in the structure is developed in the high-resistivity region near the collector-

base junction. Virtually all of the heat generated in the transistor is removed

by the heat sink. The problem is to derive an expression for the temperature

distribution inside the structure in order to locate any hot spots in the junction
regions.

It was expected that, because of end effects, the hottest portion of each

emitter was half-way down its length (top view in Fig. 1); hence, we solved for

this area only. A cross-section of a single emitter was examined, using two

of several possible techniques. One of the techniques used was to solve for a

single heat source on one side of infinite parallel planes (thus neglecting side

effects). In this case, the total solution for several emitters would be obtained

merely by superposing the individual solutions. Unfortunately, however, we

were unable to obtain the desired result by using this technique.
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Fig. 1. Structure of Typical Power Transistor

Collector is actually very much
thicker than base plus emitter.
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Fig. 2. Geometry and Coordinate System for Analysis of
Heat Transfer in Power Transistor of Fig. I
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As an alternate approach, we considered the central emitter in a large

collection. The central emitter was expected to be the warmest; hence, this

was the one of most interest. By considering the central emitter, we again

neglected side effects; however, with this technique, the final result should

still be quite good even if the total number of emitters is as small as five.

A model of the problem under consideration is shown in Fig. 2. Because

of symmetry, no heat flows across the dividing plane half-way between the

er.aitters and no heat flows from one side of an emitter to another. Hence,

these two boundaries are considered to be insulated. The heat sink,on the

bottom of the rectangle at y = b, is at temperature T . Half of the collector-

base junction beneath an emitter occupies the upper left portionof the rectangle

at y 0.

The assumptions made in this analysis are summarized as follows:

1) homogeneous and isotropic thermal conductivity

2) steady state conditions

3) infinite number of infinitely long emitters, i. e., end
effects are neglected

4) heat is generated only along the collector-base junction,
y = 0. (This primarily requires very thin emitter and
base regions.)

5) temperature at y = b is uniform at T
S

With these assumptions, the differential equation governing this process
is

82 T + 8 2 T (1)

8x 2  8•Y2

*Definitions of symbols are given in the Nomenclature at the end of this

report.
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and the boundary conditions are:

8T
at x 0, T= 0

8T
at x a, W- 0

at y = OT = - f(x)

at y = b, T = T

It may easily be shown that the following equation satisfies the above conditions,

and is thus the general solution to our problem.

00

anx (b - y) n+ an (T - Ts - 2 (b - y) a- cos - sinh sech- (2)
s 2 E n ýnv a a a

The constants an are found from the boundary condition at y = 0,

0o
BT a nlr

Sa acos - f(x) (3)
Ty- 7 E an ao

n-l

This forms a Fourier series and hence

a
an = f(x) cos -nix dx (n = 0, 1,2, (..) 4)

This solution could also be applied to the whole device, as shown in

Fig. 1, rather than to a single emitter. This is true because the device is

generally much wider than it is thick so that the edges may be considered to be

-4-
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insulated. The only alteration in the solution would be in the definition of a,

which would then become the total device width. The heat generation f(x)

would in this case be periodic with the emitter spacing. A treatment of this

type would also take into account the side effects of a finite number of emitters.

B. RELATION TO EMITTER TEMPERATURE

From an experimental standpoint, temperature is much more easily

measured than heat flux. Therefore, it is of interest to have a solution

for the problem with the temperature distribution g(x), rather than the heat

flux, specified on the collector-base junction. From Eq. (2), we find at
S~y = 0 that

Co

T -T - 2 b + na[. cos l!. xtanh -•a (5)

n-1

We now define

b b a / ( tanh bfl and b aob (6)n nk-n7 wi) a o o

Substituting these into Eq. (5), we obtain

b 00
T -Ts =- + b csa --r g (x) (7)

n4l

Hence,

aa
b = g(x) Cos n~r ix (8)
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and

T - T --- I - + E b. coox sinh a cosechbn-a (9)

n=l

Suppose that g(x) (the temperature at y - 0) were measured in some

way. From this, f(x) may be found by using Eqs. (3), (6), and (8), to obtain

a rrx h nrr nirrxf(x) g(x) dx + cos coth - g(x) cos dx (10)
n= l

If it is assumed that the surface of the transistor is at g(x), then the

temperature could conceivably be measured by using a series of materials

with progressively increasing melting points. Each material would be coated

in turn onto the device and the position of melting observed.

C. RELATION BETWEEN CURRENT DISTRIBUTION AND
HEAT GENERATION

Once f(x) is obtained, perhaps in the manner indicated in the previous
section, it should be possible to say something about the distribution of current

under the emitter. Conversely, if the current distribution is known, it should

then be possible to arrive at f(x).

. It is assumed that the heat generation at any point under the emitter is

proportional to the current density j(x) at that point, or that

j(x) N = (11)

where K is a constant that will be determined. This is of course only

a first-order approximation; K would also be a weak function of the

transistor operating conditions.
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S
If the total current per unit emitter length is i, then

i zf j(x) dx = zf dx (12)

Hence,

K , fx d.

and

jlx) - i f(x) (13)

2 f(x) dx
0

In practice, however, a heavy metallic contact layer lies over the emitter

and tends to even out the tcmnperature of the emitter and invalidate Eq. (11).

III. EXAMPLES

A. SEMI-INFINITE ONE-DIMENSIONAL TRANSISTOR

Fletcher has given an approximate solution for the current distribution

in an idealized semi-infinite one-dimensional transistor. The solution is

of the form

i (x) :o J[I + Axe-(14)

N.H. Fletcher, "Some Aspects of the Design of Power Transistors,"
Proc. IRE 43, 551-59(1955).
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where A is a constant and xe is the distance in from the edge of the emitter,

w - x. This expression tells us that the current is concentrated near the

edges of the emitters. Unfortunately, when this equation is substituted into

Eq. (13) and this in turn substituted into Eq. (4), the result cannot be inte-

grated analytically.
Thus, we are reminded that, if analytical results are desired, f(x)

must be of such a form that f(x) cos nvrx/a can be integrated. Furthermore,

because the current is known to concentrate near the edges of the emitters,

f(x) must be constant or continually increasing with x. Some functions that
a Bxfulfill these two conditions are: A, Axe(s=1,2 ..2.), A sin Bx, Ae , and

any sums thereof. Because of its simplicity, only the application of the first

function will be considered in detail here.

B. UNIFORM HEAT GENERATION

We consider now the case of uniform heat generation beneath an emitter

of width 2w. Let q be the rate of heat generation per unit length of emitter

(e. g. , watt/cm). At the collector-base junction y = 0, we then have

k 8 T or~7y2w

Hence

f (x) w for 0 < x <w

f(x) 0 for w < x < a (15)

By substituting this into Eq. (4), we obtain

2 W(2_W)a nl~x

a : -, -C cos --a dxn aJ2w a

sin nT._w (16)
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and

a° = Ia i-dx: A (17)

Substitution of (16) and (17) into Eq. (2) then yields the desired solution for

uniform heat generation under the emitters,

T - T' 8j n r =nnx.(b - y) + (,a2( )ni bnrr
k)s : (b y -sin n-._ cos n-x sinh sechn:In 2w2 kw/ a aaa

(18)

In the actual operation of the transistor, we would like to know or to

control the maximum temperature Tm. This clearly will be reached at

y = 0. For arbitrary f(x), the only general way to find the x-coordinate for

the maximum temperature is to calculate and plot

2 n h bn an

Ty0x g bx) f fx) dx + - c OS tanh- ,o f(x) cos -- dx
YO -z0 x =g (x) fo (nw1T a a f a

nzl (19)

In the present case of uniform heat generation, it is apparent that T willm
be at x = 0, under the center of the emitter.

If we define = (Tm - Ts )/(q/k) ns a dimensionless maximum temper-

ature, then the desired result is obtained by setting x = 0, y = 0 in Eq. (18)

to obtain

00
I I

7a2 _2sin nyr 7 tanh nw a a a (20)
G)+(w/a)iT flW G ~
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Plots of calculations based on this result are shown in Figs. 3, 4, and 5. It

should be noted that the series converges slowly for small w/a, 25 terms

being necessary for w/a = 0. 1.

If the emitter occupies the whole area of y = 0, which of course is not

a practical device, then w/a = I and sin nir(w/a) = 0. For this case,
S= (I/2)(b/a), which is the solution for uniform heat flow between an infinite
parallel source and sink. We call this * 1 (b/a). For b/a > 1, tanh w(b/a) f 1,

and

T -T
O=m a 21q/k + O'(f (21)

where

0 1nl sin i
S2 (w/) E --7_

This means that, for a large device thickness b, the solution is the uniform

heat flow solution plus a function of the ratio of the emitter width to emitter

spacing w/a. This fact is illustrated by the straight line portions of the

curves given in Fig. 3.

A parameter of interest to transistor designers in the past has been the

distance at which a neighboring emitter first affects the thermal behavior of

the emitter region under consideration. If we consider the emitter width 2w

and device thickness b to be fixed, then the variation in maximum tempera-

ture, as given by 0, is a function of emitter spacing,as shown in Fig. 5. As

a/b decreases, the emitter spacing grows smaller. It is seen that the

interference between emitters has effectively vanished for a/b > 2. 5. This

suggests that we can use the solution given by Eq. (18) for the isolated

emitter solution desired in Section I, if we only set a/b > 2. 5. The value

of a/b should not be set too high because, as mentioned previously, this

-10-



leads to slow convergence of the solution. Consequently, a value of 3 for

a/b was chosen as a compromise to give, at y = 0 for an isolated emitter,

T Y = - T a = 130 
, ( 2+ 3 sin.! nir co- 1 nw(_ tanh! ()

+/ -6 2 (w/b) n1n2 3 M~ 3 '_I

For a series of n emitters spaced 2a apart, we must add the solutions

for each, substituting x * j2a for x in the solution for each particular

emitter. Here j is the integral number of spacings Za by which each partic-

ular emitter is to the left or right (*) of the emitter under consideration

(that is, the one at x = 0). If we perform this summation and solve for the

temperature at the center x = 0 of the emitter under consideration, we obtain

wee+2 (w/b) . - sin -s nqr cos S nwij tanh (23)
S n

where

We return now to the original problem of an infinite number of emitters.

In designing a power transistor from a thermal standpoint, it is desired to

maximize the total current I of the device without exceeding a maximum

temperature Tm anywhere within the device. If we consider a device of

width L, then the total number of emitters present is L/2a. Hence, the

current in any single emitter is i = I/(L/Za). If it is assumed that the heat

generated beneath any emitter is q = iV, then

q 21aV/L

.-11-
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Fig. 3. Maximum Temperature in Power Transistor as a Function
of Ratio of Device Thickness to Half of Emitter Spacing;
Heat Assumed to be Liberated Uniformly Under Emitter

-12-



But, from the definition of 0,

k(Tm - To)

therefore,

Lk(Tm - T 8)
m a 5 ( 24)

The maximum total device current results when I/aO is maximum.

If, for example, b and w/a are regarded as known, then this will be at the

maximum of (b/a)/bo. With a constant -y defined as

Lk(T -T)m aDl •/= bV

then Eq. (24) becomes

Vb/a)

The maximum I then occurs at

I1b1(!)-2 00 (25)

or

00
1b/a a (26)

(26
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Fig. 4. Maximum Temperature in Power Transistor as a Function
of Ratio of Emitter Width to Emitter Spacing; Heat Assumed
to be Liberated Uniformly Under Emitter
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In other words, the maximum current would be at the point on a plot of

In 0 vs In (b/a) where the slope is 1. As might be expected, no such

maximum occurs for the present heat distribution. The best heat dissipation

will be obtained when w/a = I, which is no longer a practical transistor.

Having a minimum possible device thickness b will also give the maximum

heat dissipation.

The foregoing results may also be reached in a more intuitive manner

as follows: By examination of Fig. 5, it is seen that the value of

(Tm - Ta)/(q/k) increases as the emitter spacing is increased. On the other

hand, more emitters can be placed in the same space for closer emitter

spacings. Hence the maximum heat input to the device would be given by the

maximum of q/a. This will occur at the minimum of 0(a/b) for constant
w/b. If this operation is performed, it is again found that the optimum occurs

at w = a, for which the emitters are all touching.

We should note at this time that, in the preceding analysis, we have

assumed r to be a constant, independent of the total device heat flux. This

is not true, however, because the device itself has thermal resistance to

the flow of heat to the surroundings, and T will increase with the total

device heat flux in an approximately linear fashion. Nevertheless, this fact

will not change the above conclusions. .

For non-uniform heat liberation in the emitter, however, it should be

possible to obtain an optimum device geometry. In any case, it is clear that

the final design will not be dictated solely by thermal considerations. Elec-

trical performance characteristics and available fabrication techniques are

prime determining factors in any design. The effects of the inevitable design

compromises are shown as the squares in Figs. 3, 4, and 5, which represent

the geometry of a commercial 10-amp power transistor.

C. EMITTER PARTLY EFFECTIVE

In this section, we consider the case in which the current is assumed

to flow through only the outside section we of the emitter, but uniformly in

that portion. This condition is expressed by

-15-
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Fig. 5. Maximum Temperature in Power Transistor as a Function
of Ratio of Half of Emitter Spacing to Device Thickness;
Heat Assumed to be Liberated Uniformly Under Emitter
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0

fo ww<x<w
f(x) = for w-we- _

A~X) = 0 for O <X<W - w and w<x<a

Substitution of this condition into Eq. (2) and Eq. (4) yields

c(W

T b + I Is n (a sin n-r )

(W e/a)w 2 £en n n2 (a) - sin n2j

X cos nw () sinh ni(b- sech ni() (27)

We will leave detailed examination of this result to the reader.

D. OTHER HEAT DISTRIBUTIONS

Solutions for other current-heat source distributions may likewise be

easily found by substitution of the respective functions f(x) into Eq. (2) and
i Eq. (4). The results may be quite complex, but the principles are identical

to those outlined above for the most elementary case.

IV. CONCLUSION

The internal heat transfer problem for an interdigitated power-

transistor structure has been solved analytically. The relations among

current distribution, heat generation, and temperature distribution have

been shown. Application of the results to the most elementary case illus-

trates usage of the equations. In conjunction with considerations of other

device characteristics and current fabrication techniques, these heat transfer

results should permit a more optimum design of power transistors.
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0
NOMENCLATURE

A constant

a one-half of emitter spacing, cm

an nth constant in solution, given in Eq. (4)

B constant

b thickness of collector region, cm

bn Fourier series constant defined by Eqs. (6) and (8)

f(x) I/k of heat liberation rate at any point x under emitter, 0C/cm

g(x) temperature (0C) at any point x on y - 0

I total current of all emitters per unit length of single emitter,
amp/cm

i total current for one emitter per unit length of emitter,
amp/cm

j(x) current density at any point on emitter, amp/cm 2

jo constant in Eq. (14), amp/cm2

K constant in Eq. (11)

k thermal conductivity, watt/cm oC

L length of device, cm

m total number of emitters (Eq. 23)

n index, 0, 1, 2,

q heat liberated at each emitter per unit length of emitter,
watt/cm

s integral constant, 0, 1, 2, ..

T temperature at (x, y), 00

T maximum temperature in transistor, °C
m
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NOMENCLATURE (Continued)

T temperature of heat sink at collector, 0 C

V effective potential drop for current flow in volts, so that
q= iV

w one half of emitter width, cm

w one half of effective emitter width, from which current flows,e
cm

x distance from center plane of emitter, cm (see Fig. 2)

xe distance from outside edge of emitter, cm (w - x)

y distance from top surface, cm (see Fig. 2)

Lk(Tm - T8 )
ZbV-

q/k

01 ,ratio of device width to emitter spacing

00

9211snnl1 n•
02 (w/a)1T 2 = n 2

w/a ratio of emitter width to emitter spacing

b/a twice ratio of device width to emitter spacing

x -X

sinh x e -e2

x -X

cosh x e +e2

sech x 1/cosh x

I
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NOMENCLATURE (Continued)

cosech x 1/sinhx

tanh x sinh x/cosh x

cothx cosh x/sinhx = 1/tanhx

I
S

I
I
I
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